

Genetic Diet Analysis of Coyote Scat from Populations in Long Beach Alexis Isaev, Matthew Sheridan; Dr. D. Willette, Dr. E. Strauss, Dr. P. Auger, M. Curley, E. Simso **Center For Urban Resilience | Loyola Marymount University**

Abstract

Interactions between humans and local wildlife are inherent to urbaniz have created a demand for management solutions. Coyotes (Canis latro prominent in urban ecosystems and can potentially cause a variety of r threats, as seen at Long Beach, CA. Currently, a project is underway asso coyote population, in order to better understand how the animals funct and how best to manage them. The main components of the study incl monitoring coyote activity and dispersal patterns, how the urban enviro affects coyote living strategies, and a dietary analysis. The dietary analy components: a solid analysis of the bones found in the coyote scat and study on the genetic material of prey items found in the scat. This study the genetic analysis of the coyote scat using species-specific primers for

Introduction

- Understanding Long Beach coyote diet is important for developing a informed and effective wildlife management plan.
- Previous research in Southern California showed that urban coyotes up to 25% of their food from anthropomorphic sources, such as gark pet food and pets (Riley *et al.* 2003).
- It is difficult to determine coyote diet through observation (Klare et a 2011), so scat analysis is the preferred method (Marucco et al. 2008; Dijk *et al*. 2007).
- A novel approach to analyzing coyote diet is by utilizing genetics to i DNA of prey items deposited in their scat.
- Species-specific primers were developed for PCR using the mitochon cytochrome b gene, which is the preferred gene for mammal species identification (Bradley and Baker 2001).
- PCR products of different base pair lengths create a unique banding on the agarose gel, which can be used to identify prey item DNA in t sample.

Question: What prey items are most present in Long Beach urban coyot Do domesticated pets such as cats and dogs make up a significant prop of the diet?

Hypothesis: Domesticated pets do not make up a large portion of urbar diet, which is instead significantly comprised of naturally occurring mar

Methods

- Scat samples were collected near fire station 19 in Long Beach, CA; Latitude: 33-49'22'' N, Longitude: 118-08'03'' W
- DNA was extracted using either chelax
- Ten species of interest were chosen for this experiment ranging from common prey items to domesticated animals
- The list consisted of : Canis Latrans , Canis lupus familiaris, Felis Cat Sciurus niger, Otospermophilus beecheyi, Neotoma fuscipes, Sylvila audubonii, Thomomys bottae, Rattus rattus, and Rattus norvegicus.
- Genetic sequences for cytochrome b were retrieved from NCBI Gen
- Forward primers were designed by the alignment of the the sequen using GenStudio software, in order to find a parsimonious universal
- Reverse primers unique to each species were designed using Primer software using the cyt b gene and inputting the chosen forward prin
- The minimum base amplification pair length chosen was ~100bps length with increasing increments of ~50bps, creating a unique base pair size for each species of a multiplex.
- The reference tissues were used for positive control tests to confirm that the primers do not amplify for any other species
- The PCR products were visualized on gel using Gel Electrophoresis

		Results				
and						
e			210	220 230	240	250
tial					ACGGCTGACT AATCCG ATGGATGACT AATCCG	
the					ACGGATGACT AATCCG	
the city		_			ACGGCTGACT AATCCG	
ine city		Kattus_n	CAGTCACCCA CATCT	GCCGA GACGTAAAC <mark>1</mark>	ACGGCTGACT AATCCG	ATAC
			260	270 280		300
					ATCTGCCTTT ACATAC ATCTGCCTAT ACATCC	
wo		_			ATCTGCCTAT TTCTCC	
I		_			ATCTGCTTAT TCCTCC ATCTGCCTAT TCCTCC	
on		-	21.0	200 220	240	25.0
		Sylvilag			340 TTACCTAGAA ACCTGA	350 AATA
		-			TTATAAAGAA ACATGA	
		_			ATTCATAGAA ACCTGA CTTCCTAGAA ACATGA	
		_			TTTCCTAGAA ACCTGA	
			360	370 380	390	400
			TTGGCATTAT CCTGC	TATTC GCAGTAATAG	CCACAGCTTT CATAGG	CTAT
		-			CAACTGCATT CG CGACAGCATT CATGGG	
		Rattus_r	TTGGAATTAT CCTAC	TATTT GCAGTCATAG	CAACCGCATT CATAGG	TTAT
		Rattus_n	TTGGAATCAT TCTAC	TATTT GCAGTCATAG	CAACTGCATT CATGGG	CTAT
				420 430		450
					GGCGCAACCG TAATCA GGGGCCACCG TAATTA	
		-			GGGGCCACCG TAATTA	
		_			GGAGCCACAG TAATCA	
		Rattus_n	GTACTCCCAT GAGGA	CAAAT ATCATTCTGA	GGAGCTACAG TAATTA	СААА
			460	470 480		500
					AGCCCTAGTC GAATGG AGATCTAGTA GAATGA	
		Neotoma_	<mark>ССТТС</mark> ТАТСА GCTAT	TCCTT ATATTGGAAC	TACCCTAGTA GAATGA	ATCT
		_			CACTCTAGTC GAATGA TACCCTAGTC GAATGA	
		Naccub_11	Contraction Contra	COULT NONLIGGONO	INCCOINCIC UNITON	hitti
		Sylvilag	510 GAGGGGGGCTT CTCAG		540 TCACTCGCTT CTTCGC	550 ATTT
					TTACACGATT CTTCGC	
		_			TAACACGTTT TTTTGC TAACACGTTT TTTCGC	
		_			TAACACGCTT CTTCGC	
			560	570 580	590	600
		Sylvilag			CTAGTTATAG TTCACT	
		-			ATAGCTATAG TTCACC CTAGTTGTAG TTCACC	
		_			CTTGCAATTG TACATC	
		Rattus_n	CACTTCATCC TCCCA	TTCAT TATCGCCGCC	CTTGCAATTG TACATC	TTCT
	with highlighted <i>bottae</i> (orange), Table 1. Depictio	l species-spe , <i>Neotoma fi</i> on of the uni	ecific primer atta <i>uscipes</i> (teal), <i>Ra</i>	chment sites. <i>Sylv</i> <i>ttus rattus</i> (greer forward and reve	ve target prey spec vilagus audubonii (n) and Rattus norve rse primers for mul	red) <i>, Thor</i> <i>gicus</i> (pin
	Species na	ame	Primer direction	on Primer s	sequence 5'-3'	Product si
		ame hilus beecheyi		on Primer s	equence 5'-3' AACACGATT	Product si 75
				AAAGCTACCCT		
		nilus beecheyi	Forward	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT	AACACGATT CTAGGGCTGTAA TACACGATT	
	Spermoph Sciurus nig	nilus beecheyi ger	Forward Reverse Forward Reverse	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG	75 136
	Spermoph Sciurus nig	nilus beecheyi	Forward Reverse Forward Reverse Forward	AAAGCTACCCTA GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT	75
	Spermoph Sciurus nig Canis lupu	nilus beecheyi ger Is familiaris	Forward Reverse Forward Reverse Forward Reverse	AAAGCTACCCTA GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AATAAAACTAGTGA	75 136 232
	Spermoph Sciurus nig	nilus beecheyi ger Is familiaris	Forward Reverse Forward Reverse Forward Reverse Forward	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AATAAAAACTAGTGA	75 136
	Spermoph Sciurus nig Canis lupu Canis latro	ger us familiaris	Forward Reverse Forward Reverse Forward Reverse Forward Reverse	AAAGCTACCCTA GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AAATAAAAACTAGTGA AACACGATT TGATATGTG	75 136 232 304
	Spermoph Sciurus nig Canis lupu	ger us familiaris	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AATAAAAACTAGTGA AACACGATT TTGATATGTG AACACGATT	75 136 232
	Spermoph Sciurus nig Canis lupu Felis catus	ger us familiaris ans	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGAT	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AATAAAAACTAGTGA AACACGATT TTGATATGTG AACACGATT GGAGAGTACTAGGG	75 136 232 304 389
	Spermoph Sciurus nig Canis lupu Canis latro Felis catus Table 2. Depictio	ger us familiaris ans s	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Variable Reverse	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGC AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGAT ard and reverse	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AATAAAAACTAGTGA AACACGATT TTGATATGTG AACACGATT	75 136 232 304 389
	Spermoph Sciurus nig Canis lupu Canis latro Felis catus Table 2. Depictio species name ar	ger s familiaris ans on of unique nd expected	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse ely designed forw product length in	AAAGCTACCCTA GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGATO and reverse base pairs.	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AACACGATT TGATATGTG AACACGATT GGAGAGTACTAGGG orimers for multiple	75 136 232 304 389 ex 2, inclue
	Spermoph Sciurus nig Canis lupu Canis latro Felis catus Table 2. Depictio species name ar Species na	ger s familiaris ans on of unique nd expected ame	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Verse Forward Reverse Primer directio	AAAGCTACCCTA GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGATO AGTACTAGGATO and reverse base pairs. Dn Primer 9	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AACACGATT AATAAAAACTAGTGA AACACGATT TTGATATGTG AACACGATT GGAGAGTACTAGGG orimers for multiple	136 232 304 389 ex 2, inclue Product si
	Spermoph Sciurus nig Canis lupu Canis latro Felis catus Table 2. Depictio species name ar Species na	ger s familiaris ans on of unique nd expected	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Verse Forward Reverse Primer direction Forward	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGAT AGTACTAGGAT and reverse base pairs. DN Primer 9	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AACACGATT TGATATGTG AACACGATT GGAGAGTACTAGGG AACACGATT GGAGAGTACTAGGG	75 136 232 304 389 ex 2, inclue
	Spermoph Sciurus nig Canis lupu Canis latro Felis catus Species name ar Species na Sylvilagus	ger us familiaris ans on of unique nd expected ame audubonii	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Primer direction Forward Reverse	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGAT AGTACTAGGAT and reverse base pairs. DN Primer s GGTAAGTGTAG	AACACGATT CTAGGGCTGTAA TACACGATT GAGATCAGG AACACGATT AACACGATT TGATATGTG AACACGATT GGAGAGTACTAGGG orimers for multiple sequence 5'-3' AATCCGATA GAGCCGTAGTAAA	75 136 232 304 389 ex 2, inclue Product si 106
	Spermoph Sciurus nig Canis lupu Canis latro Felis catus Table 2. Depictio species name ar Species na	ger us familiaris ans on of unique nd expected ame audubonii	Forward Reverse Forward Reverse Forward Reverse Forward Reverse Forward Reverse Verse Forward Reverse Primer direction Forward	AAAGCTACCCT GTGAACTATGA AAAGCAACTCT TATCAGAATCGO AAAGCAACCCT GGTCAGGTGAA AAAGCAACCCT ATCATTCGGGT AAAGCCACCCT AGTACTAGGAT AGTACTAGGAT and reverse base pairs. DN Primer 9	AACACGATT CTAGGGCTGTAA TACACGATT SAGATCAGG AACACGATT AATAAAAACTAGTGA AACACGATT TTGATATGTG AACACGATT GGAGAGTACTAGGG orimers for multiple sequence 5'-3' AATCCGATA GAGCCGTAGTAAA	75 136 232 304 389 ex 2, inclue Product si

Neotoma fuscipes

Rattus norvegicus

Rattus rattus

Forward

Reverse

Forward

Reverse

Forward

Reverse

J	ase pairs.	
	Primer sequence 5'-3'	Product size
	TACGGCTGACTAATCCGATA	106
	GGTAAGTGTAGGAGCCGTAGTAAA	
	TATGGATGACTAATCCGCTA	163
	CGAATGCAGTTGCTATTGTTAG	
	TACGGATGACTAATCCGATA	226
	GAAGGTTTGTAATTACTGTAGCTCCT	
	TACGGCTGACTAATCCGATA	273
	TCAGATTCATTCGACTAGAGTGGT	
	TACGGCTGACTAATCCGATA	328
	TGAAGTGGAATGCGAAGAAG	

Loading ->
wells
el NA fragment size
Bue
∧ fra
J J J J J J J J J J J J J J J J J J J
ing
 Decreasing]
Dec
\bigvee
Figure 2. Coyote species-
correct band size. Cross an
Cross amplification needs primer successfully did no
printer successfully did no
The results from the prelic characterizing DNA on the
Further testing will be co
and in multiplex against k
effectiveness in amplifyin
be used in PCR to test coy to determine the prey ite
to determine the prey ite
Characterizing the diet of
management techniques.
prey on household pets.
to potentially dangerous poisoning coyotes (Wecke
Long Beach coyotes' diets
residents, mitigate some
dangerous population co
In a relevant study, a simi
and Adelie penguins thro to be effective, adding to
Bradley, Robert D., and Robert J. Baker
mammals." <i>Journal of Mamm</i> Weckel, Mark E., et al. "Using citizen so
Wildlife Management 74.5 (2
Klare, Unn, Jan F. Kamler, and David W. for determining carnivore die
Marucco, Francesca, Daniel H. Pletsche wolves in the Alps as a case s
Riley, Seth PD, et al. "Effects of urbaniz Conservation Biology 17.2 (2
van Dijk, Jiska, et al. "Evaluating scat ar (2007): 62-67.
Jarman, S. N., B. E. Deagle, and N. J. Ga diversity and identity in dieta
A
We would like to thank the 0
the LMU Biology departmer
addition, we would like to th

Results

Lane Species

- L Reference ladder
- 1 Pocket gopher
- 2 CA ground squirrel Did not amplify
- 3 Northern raccoon
- 4 Virginia opossum
- 5 Coyote
- 6 Fox squirrel
- 7 Striped skunk
- 8 Desert cottontai
- 9 Negative control
- L Reference ladder

Results

- (each band = 100 bases)Did not amplify (dilute) Did not amplify Did not amplify Amplified, ~300bp Amplified, ~325bp Did not amplify Amplified, multiple bands No amplification
- specific primers successfully amplified coyote DNA at the nplification occurred with fox squirrel and desert cottontail. to be removed by optimizing primers/PCR reaction. Coyote amplify other mammal DNA.

Discussion

liminary PCR indicate that our method is effective in e species level.

nducted with the species-specific primers individually known tissue samples to determine their ng the correct DNA segments. These primers will then yote scat samples from the Long Beach research site ems present in the coyote diet.

urban coyotes is essential for developing proper Importantly, residents are concerned that coyotes This concern leads to anxiety amongst residents and urban "solutions", such as shooting, trapping or el, 2010). Accurately determining the composition of s can help the city of Long Beach to educate its of their anxiety from urban predators and reduce ntrol techniques.

ilar methodology looking at the diet of Fin whales ough prey DNA amplification in the feaces was shown the validity of this coyote study (Jarman et al., 2004)

Literature Cited

- "A test of the genetic species concept: cytochrome-b nalogy 82.4 (2001): 960-973. ience to map human–coyote interaction in suburban New York, USA." Journal of
- 010): 1163-1171. Macdonald. "A comparison and critique of different
- t." Mammal Review 41.4 (2011): 294-312.
- r, and Luigi Boitani. "Accuracy of scat sampling for tudy." Journal of Mammalogy 89.3 (2008): 665-673.
- ation and habitat fragmentation on bobcats and coyotes 003): 566-576. nalysis methods to assess wolverine Gulo gulo diet."
- les. "Group-specific polymerase chain reaction for DNA-based analysis of species ry samples." Molecular Ecology13.5 (2004): 1313-1322.

cknowledgements

URES team as a whole for supporting this research, as well as nt for providing resources and space to execute the project. In hank the city of Long Beach for funding the project.

- sequences and
- scat-analysis methods
- carnivore diet analysis:
- in southern California."
- Wildlife Biology 13.sp2